真实天空测试存在的问题
在执行真实天空测试时必须面对许多的未知因素。这些未知因素包括:
卫星时钟错误
从长远看,这些错误会在导航消息和修正广播中得到纠正,但由于此类消息的更新频率很低,时钟错误在纠正之前确实会存在一段时间。
模拟器的优势:通过使用卫星模拟器,卫星时钟是不存在错误的,除非您希望它存在,而且无论是存在还是不存在,您都可以准确地了解它们并且在已知的时间予以实施。
卫星轨道错误
导航消息中标称的每颗卫星的位置与其在轨道中的物理位置是不同的。这是因为太阳、月球和地球的引力效应会部分导致轨道错误,从而累积形成了卫星轨道的微扰。
模拟器的优势:利用模拟器,我们可以消除所有的轨道错误,并使用"完美"的星群,也可以通过受控的方式实现完全可量化的错误。
导航数据错误
与任何数据传输系统一样,数据在调制、解调和传输过程中都可能发生错误。例如,为了提高强健性,GPS系统导航消息的每个字中最后6位为奇偶校验位,用于探测位错误。然而,错误仍然可能发生,而且这些错误不会得到纠正。
模拟器的优势:利用模拟器时不可能有导航数据错误发生,除非是故意施加的。
大气错误
GPS信号必须穿过大气中各层,而它们主要由两个部分构成,即电离层和对流层。电离层(地球表面上方70至1000千米)中的自由电子会导致GPS信号的调制发生延迟,延迟的程度与电子密度呈正比(信号穿过电离层的传播速度会以地面速度表示)。同样的条件也会导致RF载波的相位发生等量的提前。(信号穿过电离层的传播速度会以相位速度表示)
模拟器的优势:利用模拟器,我们可以完全禁用大气层,从而消除这些错误。相反,我们也可以将这些错误施加在已知模型上,并对其加以全面记录。
多径
GPS信号属于视线信号,可以被看作类似于一束光线。如果信号束以小于内反射临界角的角度落在RF反射表面上,就会发生反射,并出现一定的衰减。因此,接收机可能不仅接收到直射的视线信号束,还可能收到反射的版本。接收机根本不可能知道它们中的哪一个是真正的视线信号,因此会将两个都利用起来,并且继承反射信号中呈现出的延迟错误。
模拟器的优势:使用模拟器时,我们可以完全消除多径,也可以使用各种多径模型向信号施加多径。通过这种已知、受控的方式,我们能够施加多径,使其在接收机性能上的效应得到准确的分析,并采取适当的设计修改或多径消减措施。而在真实天空条件下,我们根本不可能对任意某个时刻的多径条件加以量化,因此也就不可能分析和改进接收机在应对多径时的性能。
干扰
GPS信号在到达接收机天线时已经非常弱,这是因为它们要穿越很长的距离才能从卫星到达接收机。这使它们很容易受外部来源的干扰。这些干扰可能是故意的(即人为干扰或欺骗),也可能是非有意的。GPS在面临干扰时的漏洞已经得到了广泛记载,鉴于篇幅原因本页将不再深入讨论。
干扰不仅会在接收机的位置计算中引入错误,还可能使其导航完全停止。在真实天空测试中,存在干扰的问题将非常明显,而且根本无法停止。
模拟器的优势:幸运的是,在使用模拟器时根本不存在默认状态下的干扰,但如果需要,我们也可以通过可控且可重复的方式模拟出干扰。利用思博伦GSS7765等干扰模拟系统,我们可以施加与接收机间存在不同距离的干扰源。
可重复性
当您在GPS接收机上执行测试并发现其设计中存在弱点时,正常的流程是对设计进行修改,目的是改进接收机。为了确认改进是否有效,您需要重复执行完全相同的测试。如果使用的是真实天空,我们就不可能确保后面执行的测试能够让接收机经历与最初测试相同的条件。
最明显的差异是,由于时间不同,接收机可见的星群也将完全不同。这些因素本身就已经决定测试条件是不可能重复的。另外一些不可能保持原样的特性就是大气影响和卫星的性能。
因此,真实天空不适用于旨在实现设计改进的测试。
模拟器的优势:利用星群模拟器,每次运行一个场景时所产生的信号都是完全相同的。场景会在相同日期的相同时间启动,而且卫星的位置也将是相同的,甚至连不同信号间的相对相位偏移与是一样的。通过这种方式,您就可以确保每次运行接收机测试时都为其模拟完全相同的信号。
可控制性
在任何全面的测试中,对测试条件拥有确定性的精确控制都是必不可少的。设计或系统参数的精确调整也需要对测试条件实施精确控制的小幅微调。
模拟器的优势:当使用真实天空测试方法时,我们几乎没有什么可以控制的东西。除了测试天线的物理位置外,其它的条件都不在我们的控制之下。您不可能让时间回滚,禁用大气,调整卫星信号、错误、数据、轨道-而所有这一切正是您需要完全控制的内容。
精度
GPS RF星群模拟器是一种精密的测试设备,如果维护得当,它的性能将非常精确且完全可控。模拟器信号的保真度远高于来自真实GPS系统的信号,不仅可以用于测试接收机真实的"实验室"性能,还意味着模拟器带来的信号噪音远低于热噪音的水平,因此不会给测试带来任何噪音错误。
模拟器的优势:与精度密切关联的两项因素是质量和可靠性。模拟器设计和建造过程中的精确工程,以及管理这些技术门类的质量控制进程,都将确保设备在多年内都能提供可靠的服务。
记录与回放系统的作用不容小觑
要想对接收机的性能做出全面的评价,就需要对上述的各项损伤的来源做出评估。执行这种测试的一种新兴技术就是记录RF信号并在之后在实验室中回放出来。
模拟器优势:模拟器可以绝对控制测试环境,并随意在其中添加或删除单个的损伤来源。模拟还可以用来评价目前尚未在轨运行的信号,或者是非常昂贵或难以试验的载具运动极限。的确,通过数学模型产生的合成信号代表着的是终极的控制能力。
商业竞争力
如果没有合理的商业案例,没有任何项目能够生存下来。负责项目管理和预算设置的人们必须对这一问题认真对待。通常的错误想法是,与复杂平台上涉及高动态应用的现场试验相比,模拟只是一种省钱的办法。例如,很明显我们不可能将航天级的接收机发射到轨道上,目的只是测试它是否能够正常工作。但不太明显的是,模拟可以在不那么复杂的应用中证明自己具有更高的成本效益。几个月的驾驶测试在成本上足以抵得上一台模拟器,而且在许多情况下模拟器也是比真实现场测试更具学术意义的选择。
模拟器的优势:一家领先的欧洲汽车制造商曾经计算过,执行真实驾驶测试的总成本为每天5000英磅。除了我们已经讨论过的真实测试的技术问题外,仅财务方面的优势就足以证明模拟的巨大竞争力。
|